FINAL EXAM (VOJTA) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) I got:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

But many, many other choices are possible, depending on how you row-reduce your matrix!
(2) Let $\mathbf{v}_{\mathbf{1}}$ etc. be the 4 vectors that are given to you.

Suppose $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}=c \mathbf{v}_{\mathbf{3}}+d \mathbf{v}_{\mathbf{4}}$, then $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}-c-\mathbf{v}_{\mathbf{3}}-d \mathbf{v}_{\mathbf{4}}=\mathbf{0}$, hence you'd have to solve:

$$
\left[\begin{array}{cccc}
1 & 0 & 4 & 2 \\
2 & 4 & 3 & 1 \\
3 & 1 & 1 & 2 \\
4 & -1 & -6 & 1
\end{array}\right] \mathbf{x}=\mathbf{0}
$$

where $\mathbf{x}=\left[\begin{array}{c}a \\ b \\ -c \\ -d\end{array}\right]$.
Solving this equation gives you:

$$
\left[\begin{array}{c}
a \\
b \\
-c \\
-d
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

where t is any number you'd like (except for 0).
So if you set $t=3$ for example, you get:

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
1 \\
-3
\end{array}\right]
$$

Hence your vector is:

[^0]\[

a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}=\left[$$
\begin{array}{c}
-2 \\
0 \\
-5 \\
-9
\end{array}
$$\right]
\]

Check:

$$
c \mathbf{v}_{\mathbf{3}}+d \mathbf{v}_{\mathbf{4}}=\left[\begin{array}{c}
-2 \\
0 \\
-5 \\
-9
\end{array}\right]
$$

(3) $a d-b c \neq 0$.

First of all, by IMT, all we need to show is that $\{a \mathbf{u}+b \mathbf{v}, c \mathbf{u}+d \mathbf{v}\}$ is linearly independent.

So suppose $\lambda_{1}(a \mathbf{u}+b \mathbf{v})+\lambda_{2}(c \mathbf{u}+d \mathbf{v})=\mathbf{0}$.
Then $\left(\lambda_{1} a+\lambda_{2} c\right) \mathbf{u}+\left(\lambda_{1} b+\lambda_{2} d\right) \mathbf{v}=\mathbf{0}$
But because $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, we get:

$$
\left\{\begin{array}{l}
\lambda_{1} a+\lambda_{2} c=0 \\
\lambda_{1} b+\lambda_{2} d=0
\end{array}\right.
$$

That is: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
But now if $a d-b c \neq 0$, this matrix is invertible, and we get $\lambda_{1}=\lambda_{2}=0$, hence linear independence, and if $a d-b c=0$, then we get linear dependence!
(4)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
\frac{1}{3} \\
-2 \\
1
\end{array}\right]
$$

The reason for this is that the matrix A only has rank 2 (and does not have rank 3), hence $A^{T} A$ only has rank 2.
(5) -4
(6)

$$
D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right], Q=\left[\begin{array}{ccc}
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0
\end{array}\right]
$$

(7) $\cos (\theta)=\frac{\mathbf{x} \cdot \mathbf{y}}{\|x\|\|y\|}=\frac{1}{\sqrt{14}}$, so $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{14}}\right)$, where $\mathbf{x}=(1,2,3), \mathbf{y}=$ $(1,0,0)$.
(8) $\left(0, \frac{\pi}{2}\right)$ (remember to divide your equation by $\tan (t)$)
(9) $A=P D P^{-1}$, where:

$$
D=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], P=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]
$$

Now form:

$$
\mathbf{X}(t)=\left[\begin{array}{cc}
e^{2 t} & e^{-t} \\
e^{2 t} & -2 e^{-t}
\end{array}\right]
$$

And the matrix Φ we're looking for is:
$\Phi(t)=\mathbf{X}(t) \mathbf{X}^{-1}(0)=\left[\begin{array}{cc}e^{2 t} & e^{-t} \\ e^{2 t} & -2 e^{-t}\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]^{-1}=\left[\begin{array}{cc}e^{2 t} & e^{-t} \\ e^{2 t} & -2 e^{-t}\end{array}\right]\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}\end{array}\right]=\left[\begin{array}{cc}\frac{2}{3} e^{2 t}+\frac{1}{3} e^{-t} & \frac{1}{3} e^{2 t}-\frac{1}{3} e^{-t} \\ \frac{2}{3} e^{2 t}-\frac{2}{3} e^{-t} & \frac{1}{3} e^{2 t}+\frac{2}{3} e^{-t}\end{array}\right]$
(10) The eigenvalues of A are $-1 \pm 2 i$, hence the solutions spiral (because of the imaginary part $2 i$), but because because the real part -1 is negative, the solutions will eventually go to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Note: This is basically because your solutions are of the form $e^{-t} \cos (2 t) \mathbf{a}+$ $e^{-t} \sin (2 t) \mathbf{b}$.
(11)

$$
\mathbf{x}(t)=A e^{-t}\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]+B e^{2 t}\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]+C e^{2 t}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

(12)

$$
A_{0}=\frac{1}{2}
$$

$A_{m}=\frac{2}{\pi m} \sin \left(\frac{\pi m}{2}\right)=0$ if m is even, $(-1)^{k}$ if $m=2 k-1$ is odd
That is:

$$
f(x) "=" \frac{1}{2}+\frac{2}{\pi m} \sum_{k=1}^{\infty}(-1)^{k} \cos (\pi(2 k-1) x)
$$

(13) (a)

$$
\left\{\begin{aligned}
X^{\prime \prime}(x) & =\lambda X(x) \\
2 T^{\prime}(t)-T^{\prime \prime}(t) & =\lambda T(t)
\end{aligned}\right.
$$

(b) $\lambda=-(\pi m)^{2}$

$$
\begin{aligned}
& X(x)=\sin (\pi m x) \\
& T(t)=A_{m} e^{t} \cos \left(\sqrt{1-(\pi m)^{2}} t\right)+B_{m} e^{t} \sin \left(\sqrt{1-(\pi m)^{2}} t\right)
\end{aligned}
$$

Hence:

$$
u(x, t)=\sum_{m=1}^{\infty}\left(A_{m} e^{t} \cos \left(\sqrt{1-(\pi m)^{2}} t\right)+B_{m} e^{t} \sin \left(\sqrt{1-(\pi m)^{2}} t\right)\right) \sin (\pi m x)
$$

[^0]: Date: Wednesday, December 7th, 2011.

